

Maxim > Products > [Power and Battery Management]

NiMH Battery Charger Detects and Avoids Charging Alkaline Cells

Description

The DS2711 and DS2712 are ideal for in-system or stand-alone charging of 1 or 2 AA or AAA NiMH "loose" cells. Temperature, voltage, and charge time are monitored to provide proper fast charging control algorithms for nickel metal hydride (NiMH) batteries. Battery tests are included to detect defective or inappropriate cells such as alkaline primary batteries. The DS2711/DS2712 support series and parallel topologies, with independent monitoring and control of each cell. Charging of NiCd chemistry cells is also supported.

Awards

DS2711: EDAW-NEC Power-Supply Product Award Winner 2005

Applications/Uses

Key Features

- Charge 1 or 2 NiMH Cells
- Detect and Avoid Charging Alkaline Cells
- Precharge Deeply Depleted Cells
- Fast Charge NiMH with -∆V Termination Sensitivity of 2mV (typ)
- Monitor Voltage, Temperature, and Time for Safety and Secondary Termination
- Regulate Charge Current:
 - Linear Control (DS2711)
 - Switch-Mode Control (DS2712)
- Drive PMOS or PNP-Type Pass Element or Switch, or an Optocoupler
- Compatible with Popular Optocouplers and Integrated Primary Side PWM Controllers
- Small 16-Pin SO or TSSOP Package

Desktop/Stand-Alone Chargers (AAA/AA) Digital Still Cameras Gaming Music Players Toys

Key Spec	ifications:	Battery C	hargers									
Part Number	Cell Chemistry	Number of NiMH or NiCd cells	Protected V _{IN} (max) (V)	Charging V _{IN} (max) (V)	Charge Rate Set by	Charge Termination	Charge Regulation	Features	EV- Kit	Package	Operating Temp. Range (°C)	
DS2711	NiCd	1	5.5	5.5	Resistor	-AV	Linear	Stand Alone Thermistor	Yes	SOIC/16	201 70	
DS2712	NiMH	2	5.5	5.5	Resision	-⁄∆V	Switchmode	Input • Timer	165	TSSOP/16	-20 to +70	
	See All Battery Chargers (62)											

Notes:

**This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity pricing may vary substantially and international prices may differ due to local duties, taxes, fees, and exchange rates. For volume-specific prices and delivery, please see the price and availability page or contact an authorized distributor.

Application Notes

Application Note 3388: Detecting Primary Cells with the DS2711/12 - DS2711, DS2712

Application Note 3607: Charging Batteries from USB - DS2711, DS2712

Application Note 3999: Overview of Rechargeable Batteries and Fast Stand-Alone Chargers - DS2711,

DS2712

Application Note 4215: Estimating Switching Speed for the DS2712 NiMH Battery Charger - DS2712

Evaluation Kits

DS2711K, DS2712K

Design Guides

Battery Management (PDF) Power Management for Battery-Powered Equipment (PDF)

Reliability Report: DS2711.pdf DS2712. pdf

Software/Models

none

Ordering Information

Notes:

- 1. Other options and links for purchasing parts are listed at:
- 2. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within one business day.
- 3. Part number suffixes: T or T&R = tape and reel; + = RoHS/lead-free; # = RoHS/lead-exempt. More: SeeFull Data Sheet or Part Naming Conventions.
- 4. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the product uses. Note that "+", "#", "-" in the part number suffix describes RoHS status. Package drawings may show a different suffix character.

DS2711	Free Sample	Buy	Package: TYPE PINS FOOTPRINT DRAWING CODE/VAR *	Temp	RoHS/Lead-Free? Materials Analysis
DS2711Z+T&R			SOIC; 16 pin; Dwg: 21-0041 (PDF) Use pkgcode/variation: S16+1*	-40°C to +85°C	RoHS/Lead-Free: Lead Free Materials Analysis
DS2711Z+			SOIC;16 pin; Dwg: 21-0041 (PDF) Use pkgcode/variation: S16+1*	-40°C to +85°C	RoHS/Lead-Free: Lead Free Materials Analysis
DS2711E+			TSSOP;16 pin; Dwg: 21-0066 (PDF) Use pkgcode/variation: U16+1*	-40°C to +85°C	RoHS/Lead-Free: Lead Free Materials Analysis
DS2711E+T&R			TSSOP;16 pin; Dwg: 21-0066 (PDF) Use pkgcode/variation: U16+1*	-40°C to +85°C	RoHS/Lead-Free: Lead Free Materials Analysis
DS2712	Free Sample	Buy	Package: TYPE PINS FOOTPRINT DRAWING CODE/VAR *	Temp	RoHS/Lead-Free? Materials Analysis

Devices: 1-8 of 8

DS2712Z+	SOIC;16 pin; Dwg: 21-0041 (PDF) Use pkgcode/variation: S16+1*	-40°C to +85°C	RoHS/Lead-Free: Lead Free Materials Analysis
DS2712Z+T&R	SOIC; 16 pin; Dwg: 21-0041 (PDF) Use pkgcode/variation: S16+1*	-40°C to +85°C	RoHS/Lead-Free: Lead Free Materials Analysis
DS2712E+	TSSOP; 16 pin; Dwg: 21-0066 (PDF) Use pkgcode/variation: U16+1*	-40°C to +85°C	RoHS/Lead-Free: Lead Free Materials Analysis
DS2712E+T&R	TSSOP; 16 pin; Dwg: 21-0066 (PDF) Use pkgcode/variation: U16+1*	-40°C to +85°C	RoHS/Lead-Free: Lead Free Materials Analysis

More Information

New Product Press Release 2004-10-

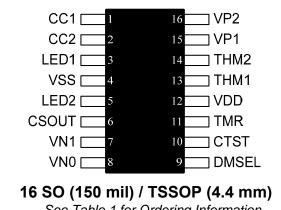
23

DALLAS SEMICONDUCTOR

DS2711/DS2712 Loose Cell NiMH Chargers

DESCRIPTION

The DS2711 and DS2712 are ideal for in-system or stand-alone charging of 1 or 2 AA or AAA NiMH "loose" cells. Temperature, voltage, and charge time are monitored to provide proper fast charging control algorithms for nickel metal hydride (NiMH) batteries. Battery tests are included to detect defective or inappropriate cells such as alkaline primary batteries. The DS2711/DS2712 support series and parallel topologies, with independent monitoring and control of each cell. Charging of NiCd chemistry cells is also supported.


FEATURES

- Charge 1 or 2 NiMH Cells
- Detect and Avoid Charging Alkaline Cells
- Precharge Deeply Depleted Cells
- Fast Charge NiMH with -∆V Termination Sensitivity of 2mV (typ)
- Monitor Voltage, Temperature, and Time for Safety and Secondary Termination
- Regulate Charge Current:
 - Linear Control (DS2711) Switch-Mode Control (DS2712)
- Drive PMOS or PNP-Type Pass Element or Switch, or an Optocoupler
- Compatible with Popular Optocouplers and Integrated Primary Side PWM Controllers
- Small 16-Pin SO or TSSOP Package

APPLICATIONS

- Desktop/Stand-Alone Chargers (AAA/AA)
- **Digital Still Cameras**
- **Music Players**
- Games
- Toys

PIN CONFIGURATION

See Table 1 for Ordering Information.

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	CC1	Cell 1 Charge-Control Output
2	CC2	Cell 2 Charge-Control Output
3	LED1	Cell 1 Status
4	V _{SS}	Ground Reference and Chip-Supply
-	V 55	Return
5	LED2	Cell 2 Status, Mode-Select Input
6	CSOUT	Current-Sense Output
7	VN1	Current-Sense + Input
8	VN0	Current-Sense - Input
9	DMSEL	Display-Mode Select
10	CTST	Cell Test Threshold Set
11	TMR	Charge Timer Set
12	V _{DD}	Chip-Supply Input (4.0V to 5.5V)
13	THM1	Cell 1 Thermistor Input
14	THM2	Cell 2 Thermistor Input
15	VP1	Cell 1 Positive-Terminal Sense Input
16	VP2	Cell 2 Positive-Terminal Sense Input

PART	MARKING	PIN-PACKAGE	
DS2711Z	DS2711	16 SO	
DS2711Z/T&R	DS2711	16 SO, Tape-and-Reel	
DS2712Z	DS2712	16 SO	
DS2712Z/T&R	DS2712	16 SO, Tape-and-Reel	
DS2711Z+	DS2711	16 SO	
DS2711Z+T&R	DS2711	16 SO, Tape-and-Reel	
DS2712Z+	DS2712	16 SO	
DS2712Z+T&R	DS2712	16 SO, Tape-and-Reel	
DS2711E+	DS2711	16 TSSOP	
DS2711E+T&R	DS2711	16 TSSOP, Tape-and-Reel	
DS2712E+	DS2712	16 TSSOP	
DS2712E+T&R	DS2712	16 TSSOP, Tape-and-Reel	

Table 1. ORDERING INFORMATION

+ Denotes lead-free package.

ABSOLUTE MAXIMUM RATINGS*

Voltage on All Pins Relative to V_{SS} Voltage on DMSEL Continuous Sink Current CC1, CC2, LED1, LED2 and CSOUT Operating Temperature Range Storage Temperature Range Soldering Temperature -0.3V to +6V V_{DD} + 0.3V 20mA -40°C to +85°C -55°C to +125°C See IPC/JEDECJ-STD-020

*This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(4.0V \le V_{DD} \le 5.5V; T_A = -20^{\circ}C \text{ to } +70^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V _{DD}	(Note 1)	4.0		5.5	V
Input Voltage Range		LED2, DMSEL	-0.3		+5.5	V

DC ELECTRICAL CHARACTERISTICS

 $(4.0V \le V_{DD} \le 5.5V, T_A = -20^{\circ}C$ to $+70^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current, V _{DD}	I _{DD}	Operating mode	Operating mode 250		500	μA
UVLO Threshold	V _{UVLO}	V _{DD} rising (Note 1) 3.5 3.9		V		
UVLO Hysteresis	V _{UHYS}	V _{DD} falling from above V _{UVLO}	40			mV
Output-Voltage Low, CC1, CC2, LED1, LED2	V _{OL1}	$V_{DD} = 5.0V,$ $I_{OL} = 20mA$ (Note 1)			1.0	V
Output-Voltage Low, CSOUT	V _{OL2}	$V_{DD} = 5.0V,$ $I_{OL} = 20mA$ (Note 1)		0.75	1.25	V
Leakage Current, CC1, CC2, LED1, LED2, CSOUT	I _{LKG}	V _{DD} = 5.0V, Output inactive	-1		+1	μA
Threshold Voltage, -∆V Termination	$V_{-\Delta V}$	After t _{THO}	1.0	2.0	3.0	mV
Mode Test Current, DMSEL, LED2	I _{MTST}	(Notes 2, 3)		5	15	μA

DS2711/DS2712: Loose Cell NiMH Charger

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Logic-High, DMSEL, LED2	VIH	(Note 1)	V _{DD} - 0.2V			V
Input Logic-Low, DMSEL, LED2	V _{IL}	(Note 1)			0.2	V
Input Leakage Current, DMSEL	I _{IL1}	After power-up mode select, DMSEL = V _{DD} or V _{SS}	-1		+1	μA
Threshold Voltage, Cell Test	V _{CTST}	$R_{CTST} = 80 k\Omega$	85	100	115	mV
Threshold Voltage, Cell Voltage Low	$V_{BAT-LOW}$	CC1 = CC2 = high-Z (Note 4)	0.9	1.0	1.1	V
Threshold Voltage, Cell Voltage Max1	$V_{BAT-MAX1}$	CC1 = CC2 = high-Z (Note 4)	1.55	1.65	1.75	V
Threshold Voltage, Cell Voltage Max2	V _{BAT-MAX2}	CC1, CC2 active (Note 4)	1.64	1.75	1.86	V
Threshold Voltage Delta	$V_{BAT-MAX\Delta}$	V _{BAT-MAX2} - V _{BAT-MAX1} (Note 5)	90	100	110	mV
Threshold Voltage, Thermistor - Min	V _{THM-MIN}	(Notes 1, 4, 6)		V _{DD} x 0.73		V
Threshold Voltage, Thermistor - Max	V _{THM-MAX}	(Notes 1, 4, 6)	0.30	V _{DD} x 0.33	0.36	V
Threshold Voltage, Thermistor - Stop	V _{THM-STOP}	(Notes 1, 4, 6)		V _{DD} x 0.29		V
Threshold Current, TMR Pin Suspend	I _{TMR-SUS}			0.1	0.5	μA
Presence Test Current, VP1, VP2	I _{PTST}	Parallel: $V_{DD} \ge 4.0V$, Series: $V_{DD} \ge 4.5V$		10	15	μA
Reverse Leakage Current, VP1, VP2	I _{LKGR}	V _{DD} = 0V, VP1 = 1.5V, VP2 = 3.0V			2	μA
Current-Sense Reference	V _{IREF}	(Note 1, 4, 7)		125		mV
Voltage	V IREF	(NOLE 1, 4, 7)	-6%		+6%	%
Gain, Current-Sense Error Amp	G _M	DS2711 (Note 8)	0.9		1.5	Ω-1
Gain, Current-Sense Comparator	G _M	DS2712 (Note 8)	10			Ω-1
Propagation Time, Current-Sense Comparator	t _{PDLY}	DS2712, 2mV over/underdrive			0.25	μS
Hysteresis, Current- Sense Comparator	$V_{\text{HYS-COMP}}$	DS2712	22	24	26	mV

ELECTRICAL CHARACTERISTICS: TIMING

 $(4.0V \le V_{DD} \le 5.5V, T_A = -20^{\circ}C$ to $+70^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Internal Timebase Period	t _{BASE}			0.96		s
Internal Timebase Accuracy			-10		+10	%
Duty Factor, Series Fast Charge		CC1		0.969		
Duty Factor, Series Precharge/Top-Off		CC1		0.250		
Duty Factor, Parallel Fast Charge		CC1, CC2		0.484		

DS2711/DS2712: Loose Cell NiMH Charger

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Duty Factor, Parallel Precharge/Top-Off		CC1, CC2	0.125		
Duty Factor, Maintenance Charge		CC1, CC2	0.0156		
Cell Test Interval	t _{CTST}		31		s
Precharge Time-Out	t _{PCHG}	V _{CELL} < V _{BAT-MIN}	34		minutes
Fast-Charge Termination Hold-Off Period	t _{THO}		4		minutes
Fast-Charge Flat Voltage Time-Out	t _{FLAT}	V _{CELL} not increasing	16		minutes
Charge Timer Period	t _{CTMR}	R_{TMR} = 100k Ω	2.5		h
Charge Timer Accuracy		R _{TMR} = 100kΩ	-5	+5	%
Charge Timer Range	t _{ctmr-range}		0.5	10	h

Note 1:

Voltages relative to $V_{\text{SS}}.$ I_{MTST} current is applied as a source current and as a sink current within 5ms after power-up. Note 2:

When operating in two-cell-series charge configuration, the DMSEL pin must have less than 50pF of external load capacitance for proper operation. If the load capacitance is greater than 50pF, a resistor voltage divider should be used to maintain DMSEL Note 3: at $V_{DD}/2$.

Note 4: Specification applicable during charge cycle with $T_A = 0^{\circ}C$ to +70°C.

 $\begin{array}{l} V_{BAT-MAX1} \text{ and } V_{BAT-MAX1} \text{ are generated from the same reference. Their ranges never overlap.} \\ V_{THM-MIN}, V_{THM-MAX}, \text{and } V_{THM-STOP} \text{ are fixed ratios of } V_{DD}. \\ \text{Tested with } I_{CSOUT} = -1\text{mA.} \\ \text{Gain tested with 1mV step with } I_{CSOUT} = -1\text{mA.} \\ \end{array}$ Note 5:

Note 6:

Note 7:

Note 8:

MODE	CURF	RENT LIMIT 5	MIT 500mA CURRENT LIMIT 10			000mA
Cell Capacity	900mAH	1700mAH	2200mAH	900mAH	1700mAH	2200mAH
Fast	C/3.72	C/7.02	C/9.08	C/1.86	C/3.51	C/4.54
Precharge/Top-Off	C/14.4	C/27.2	C/35.2	C/7.20	C/13.6	C/17.6
Maintenance	C/115	C/218	C/282	C/57.6	C/109	C/141

Table 4. PARALLEL CONFIGURATION, EACH CELL

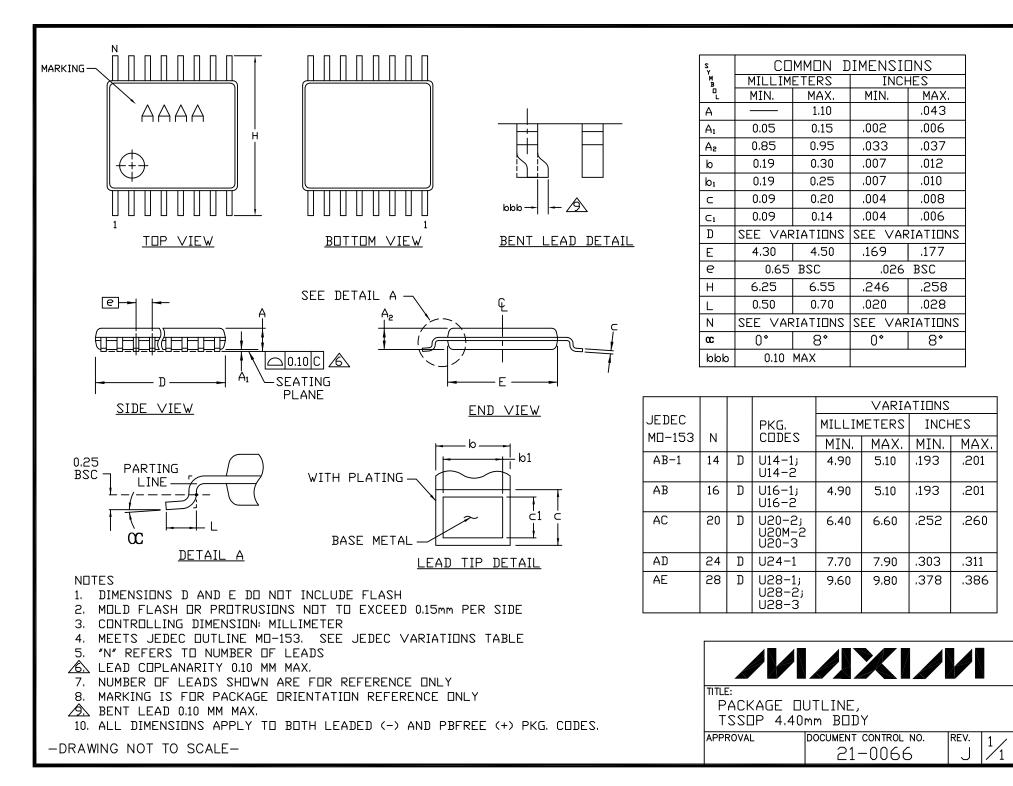
Series and Single Cell Charging Example:

In the series and single-cell modes, the effective fast charge current is equal to 0.969 times the regulated current limit and the top-off current is 0.25 times the regulated current. The maintenance mode is identical to the parallel charging rate, that is, 1/64 times the regulated current. The C-rates for charging 3 different cell capacities using a 500mA and a 1000mA current source are shown in the following table.

Table 5. SERIES CONFIGURATION, EACH CELL

MODE	CURF	RENT LIMIT 5	600mA	CURRENT LIMIT 1000mA			
Cell Capacity	900mAH	1700mAH	2200mAH	900mAH	1700mAH	2200mAH	
Fast	C/1.86	C/3.51	C/4.54	C/0.93	C/1.75	C/2.27	
Precharge/Top-Off	C/7.20	C/13.6	C/17.6	C/3.60	C/6.80	C/8.80	
Maintenance	C/115	C/218	C/282	C/57.6	C/109	C/141	

LED1 and LED2 Outputs, MODE-Select Input


Open-drain outputs LED1 and LED2 pull low to indicate charge status. When inactive, the outputs are high impedance. LED1 displays the status for the cell monitored by VP1 and LED2 displays the status for the cell monitored by VP2.

The LED pins drive low in three "blink" patterns to annunciate the charge status. Table 6 summarizes the LED operation in each display mode (DM0, DM1, DM2) for each charge condition. In parallel mode, LED1 indicates the status of the cell whose positive terminal is connected to VP1 and LED2 indicates the status of the cell whose positive terminal is connected to VP2. In series mode, LED1 indicates the charge status for both cells since they are charged in series.

Table 6. DISPLAY PATTERNS BY DISPLAY MODE AND CHARGE ACTIVITY

DISPLAY MODE		CHARGE ACTIVITY			
	DMSEL PIN	NO BATTERY	PRE/FAST/TOP- OFF CHARGING	MAINTENANCE	FAULT
DM0	Low	High-Z	Low	0.80s Low 0.16s High-Z	0.48s Low 0.48s High-Z
DM1	Float	High-Z	Low	High-Z	0.16s Low 0.16s High-Z
DM2	High	High-Z	0.80s Low 0.16s High-Z	Low	0.16s Low 0.16s High-Z

High-Z = High Impedance

